Gentian violet induces wtp53 transactivation in cancer cells

نویسندگان

  • ALESSIA GARUFI
  • VALERIO D’ORAZI
  • JACK L. ARBISER
  • GABRIELLA D’ORAZI
چکیده

Recent studies suggest that gentian violet (GV) may have anticancer activity by inhibiting for instance NADPH oxidases (Nox genes) whose overexpression is linked to tumor progression. Nox1 overexpression has been shown to inhibit transcriptional activity of the oncosuppressor p53, impairing tumor cell response to anticancer drugs. The tumor suppressor p53 is a transcription factor that, upon cellular stress, is activated to induce target genes involved in tumor cell growth inhibition and apoptosis. Thus, its activation is important for efficient tumor eradication. In this study, we examined the effect of GV on wild-type (wt) p53 activity in cancer cells. We found that GV was able to overcome the inhibitory effect of the NADPH oxidase Nox1 on p53 transcriptional activity. For the first time we show that GV was able to directly induce p53/DNA binding and transcriptional activity. In vitro, GV markedly induced cancer cell death and apoptotic marker PARP cleavage in wtp53-carrying cells. GV-induced cell death was partly inhibited in cells deprived of p53, suggesting that the anticancer activity of GV may partly depend on p53 activation. GV is US Food and Drug Administration approved for human use and may, therefore, have therapeutic potential in the management of cancer through p53 activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MDM2 does not influence p53-mediated sensitivity to DNA-damaging drugs.

MDM2 inhibits transactivation properties of the tumor suppressor protein p53 by binding to and facilitating proteasomal degradation of p53. Because MDM2 targets p53 for degradation, it was anticipated that cells that overexpress MDM2 would not contain functional wild-type p53 (wtp53). However, p53 and MDM2 in cells with damaged DNA can become phosphorylated, and their binding to each other can ...

متن کامل

Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown.

About half of cancers sustain mutations in the TP53 gene, whereas the other half maintain a wild-type p53 (wtp53) but may compromise the p53 response because of other alterations. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of p53 oncosuppressor function. Here, we show, by microarray analysis, that wtp53 lost the target gene activation following stable knockdown of ...

متن کامل

Gentian violet inhibits MDA-MB-231 human breast cancer cell proliferation, and reverses the stimulation of osteoclastogenesis and suppression of osteoblast activity induced by cancer cells.

Gentian violet (GV) is a cationic triphenylmethane dye, with potent antifungal and antibacterial activity. We recently reported that in vitro GV suppresses the differentiation of bone resorbing osteoclasts while stimulating the differentiation and activity of bone forming osteoblasts. Breast cancer is highly metastatic to bone and drives bone turnover that further promotes cancer engraftment an...

متن کامل

A novel HSP90 inhibitor delays castrate-resistant prostate cancer without altering serum PSA levels and inhibits osteoclastogenesis.

PURPOSE Prostate cancer responds initially to antiandrogen therapies; however, progression to castration-resistant disease frequently occurs. Therefore, there is an urgent need for novel therapeutic agents that can prevent the emergence of castrate-resistant prostate cancer (CRPC). HSP90 is a molecular chaperone involved in the stability of many client proteins including Akt and androgen recept...

متن کامل

Cancer Therapy: Preclinical A Novel HSP90 Inhibitor Delays Castrate-Resistant Prostate Cancer without Altering Serum PSA Levels and Inhibits Osteoclastogenesis

Purpose: Prostate cancer responds initially to antiandrogen therapies; however, progression to castration-resistant disease frequently occurs. Therefore, there is an urgent need for novel therapeutic agents that can prevent the emergence of castrate-resistant prostate cancer (CRPC). HSP90 is a molecular chaperone involved in the stability of many client proteins including Akt and androgen recep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2014